NOAA Technical Memorandum EDS CEDDA-6

DATA EDITING--SUBROUTINE EDITQ

Donald T. Acheson

Center for Experiment Design
and Data Analysis
Washington, D.C.

June 1975

noaa NATIONAL OCEANIC AND Environmental Data
ATMOSPHERIC ADMINISTRATION Service



NOAA TECHNICAL MEMORANDUMS
Environmental Data Service, CEDDA Series

The Center for Experiment Design and Data Analysis (CEDDA) became part of
NOAA's Environmental Data Service in 1972 and was given the responsibility
for data management and research activities related to major international
scientific field experiments.

Formerly the Barbados Oceanographic and Meteorological Analysis Project
(BOMAP), CEDDA is still concerned with analyses of data collected during the
Barbados Oceanographic and Meteorological Experiment (BOMEX), conducted in
1969, and will continue to issue publications pertaining to BOMEX as part of
the EDS BOMAP series.

NOAA Technical Memorandums in the Environmental Data Service CEDDA series
will serve to disseminate information related to the 1972-73 International
Field Year for the Great Lakes (IFYGL), the 1974 Glohal Atmospheric Research
Program (GARP) Atlantic Tropical Experiment (GATE), as well as other pro-
jects in which CEDDA participates.

Publications listed below are available from the National Technical Infor-
mation Service, 1I.S. Department of Commerce, Sills Bldg., 5285 Port Royal
Road, Springfield, Va. 22151, Prices on request. Order by accession number
(given in parentheses).

NOAA Technical Memorandums
EDS CEDDA-1 Omega Wind-Finding Capabilities: Wallops Island Experiments.

Donald T. Acheson, October 1973, 77 pp. (COM-74-10039)

EDS CEDDA-2 Characteristics of the Lower Atmosphere Near Saipan, April 29
to May 16, 1945, Joshua Z. Holland, in press, 1975.

EDS CEDDA-3 IFYGL Physical Data Collection System: Intercomparison Data.
Jack Foreman, May 1975, 7 pp.

ENS CEDDA-4 Preliminary Report on Wind Errors Encountered During Automatic
Processing of IFYGL LORAN-C Data. J. Sullivan and J.
Matejceck, May 1975, 9 pp.

EDS CEDDA-5 Generation of GATE Ship Speed Data hy Variational Technique.
Jerry Sullivan, June 1975.



NOAA Technical Memorandum EDS CEDDA-6

DATA EDITING--SUBROUTINE EDITQ

Donald T. Acheson

Center for Experiment Design -
and Data Analysis
Washington, D.C.
June 1875

UNITED STATES
DEPARTMENT OF COMMERCE
Rogers C. B, Morton, Secretary

/

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
Robert M. White, Administrator

/

Environmental Data

Service
Thomas $. Austin, Director

x
]
g



Abstract « +« .+ + + 1+ .
1. Introduction . . .

2, Use .+ « ¢ o« o« o

- 3., Polynomial Fitting

4, Operation and Flow
Reference . . . . .« .

Appendix . . . . . . .

CONTENTS

. . & - . . - . . )
. . . . . - . . - -
. LI L} . . . . . -

. . 0w .« s . n . s .
- . . - . - . .
- . . - - . . .

iii




DATA EDITING - SUBROUTINE EDITQ

Center for Experiment Design and Data Analysis
National Oceanic and Atmospheric Administration
Washington, D.C. 20235

Abstract. EDITQ is a FORTRAN subroutine designed to recursively edit,
i.e., remove wild or suspicious points from a data sequence, Editing
is done by fitting a second-order polynomial ¥4 = ay + ajxjy + apxi”,
i=1, 2, ..., N to a paired sequence {(y1, %1), (¥y2, %2)s +..s (IN»
xy)}, computing the residual variance

N ~ 2

o =L/ =-3) 2 (v, - vy) ,

i=l
and forming the dimensionless ratio Rj2 = (yi - §i)2/UR2 for each
point. If Ri2 exceeds some specified limit, the point (yi, xi) is
réjected, and the residual variance and polynomial coefficients are
recomputed without this data point. The process continues until no
further data points are rejected in subsequent passes over the en-—
tire sequence. The subroutine returns the original. sequence with
flagged rejected values of y, the final values of the residual wvar-
iance and polynomial coefficients, and the covariance matrix of the
coefficients.

1. INTRODUCTION

EDITQ is a general-purpose routine designed to edit data, i.e., to remove
or flag wild or ridiculous or merely suspicious data values. Data are input
as a sequence of palred independent and dependent variables. The principal
outputs are the same data with edited data points flagged; the three coeffi-
cients of a second-order polynomial fitted to all accepted, but no rejected,
data points; the covariance matrix of these coefficients; and the residual
variance.

Editing is done as follows:

(1) The dependent variable is least-squares fitted with a second-order
polynomial in the independent variable, and the residual variance is calculat-
ed,

(2) The absolute value of the deviation of each dependent datum from the
fitted polynomial is compared with the square root of the residual wvariance.
If their ratio exceeds a specified limit, the dependent datum is flagged and
rejected from further consideration.

(3) When a datum is rejected, the polynomial coefficients and residual
variances are recomputed without this data point, and the next dependent datum
is examined in the same way. This process continues until no further points
are removed, or a fixed number of passes have already been made over the entire
data sequence,




The principal advantages of EDITQ are:

(1} The accept/reject criterion for editing described in step (2) above
automatically accomodates both very noisy and very clean data.

(2) EDITIQ is recursive. Once a data point, no matter how wild, is
rejected, it no longer figures in any further computations and cannot obscure
other data points with much smaller error content but still worthy of rejection.

(3) The polynomial coefficients returned provide a simple means to com-—
pute replacement values for those rejected in the process.

The principal restrictions on the use of EDITQ are:

(1) * If we view the dependent data as describing an underlying physical
process more or less obscured by noise, it must be possible to approximate the
underlying physical process by a second-order polynomial in the independent vari-
able over the range of the data sequence. In other words, the modeling error
must be significantly less than the residual variance returned. For example,

a rapldly varying dependent variable, say surface solar radiation, could only
be edited effectively if the sample rate were very high to allow EDITQ to
operate on a sequence with a sufficient number of points to do useful editing
but sufficiently short in duration for a second-order polynomial to be a good
approximation to the real physical process. '

(2) The independent variable is mot edited. Unpredictable results occur
when this wvariable contains errors.

(3) There is no physics in EDITQ. It has utterly no capability for
editing consistently ridiculous data, say a sequence of absolute zeroes in
temperature as ‘a function of time. EDITQ is adept at editing outliers in a
statistical sense, but must be preceded by a physical credibility window.

2. TUSE

With reference to the listing in the appendix to this discussion, users
must input the two—dimensional array DATA, its dimensions in storage LENGTH
and IMAX, the index IND at the independent wvariable and the index T of the
dependent variable, the maximum number of points MAXOUT that may be rejected
and also the dimension of array NLOST, the value BOUND that must be more
negative than the negative of the absolute wvalue of any acceptable dependent
datum, and the accept/reject ratio SDLIM.

The routine returmns the array DATA in which all values of the independent
data and all accepted dependent data values are as input, while those rejected
have the value DATA (Jrejected s I) + 2 x BOUND; the number of points rejected
NCORR; the indices of rejected points NLOST (k), k=1, 2, ... , NCORR; the
final polynomial coefficients A@, Al, and A2; the covariance matrix COVAR of
these three coefficients; the square root of the residual variance STD, and
the maximum deviation DEVMAX of any data point from the polynomial current at
the time DEVMAX was found.




Appropriate choices of some of these parameters lend considerable flexi-~
bility to the use of EDITIQ, e.g.,

(1) SDLIM - If SDLIM is greater than [LENGTH—3]1/2, no editing will take
place, and the routine serves simply to least-squares fit the data and return
the residual variance, polynomial coefficients, and their covariance matrix.

(2) BOUND - If attention is paid to the number of significant digits
that can be represented in the computer being used, original data values of
rejected points can be recovered by addressing the array NLOST for the in-
dices Jrejected = NLOST (k), k =1, 2, ..., NCORR and subtracting 2 x BOUND
from the returned values in DATA. If preliminary editing has been done, say
simple checking for physically impossible values, and points failing this
test are assigned values less than BOUND, EDITQ will not consider them further.

3. POLYNOMIAL FITTING AS A FILTER

Since a least-squares fitted second-order polynomial ié, in genéral; a
smooth estimator of noisy data, it is suitable to compare this estimate with
simple arithmetic averaging.

Define time—centered simple arithmetic averaging as

N

Vyle) = 1/ + 1) -E_NyJ’ » ¥y =yl (1)

where ti is time centered (without loss of generality) at t, = 0. The analo-
gous second-order least-squares fitted estimate is

-~ 2 _
yN(o) =3, + alto + azto = a, ,
4 2 yA 4 2.2

a, = (t, vy, -—Zt, IT¢t, . 2N+ 1)y z &, - (% t,

o= (. i V5 i 3 yj)/[( ) 3 ( 5 ) Il

(2}

all sums being j = -N, ..., N,
The transfer function of a filter is defined as the ratio of the Fourier

transform ¥ of output to that of the input,

Yo(w) = FGO/FG)
(3)

e
=
~
1=
o
]

= FEP/FG)
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Since both smoothing operations defined in (1) and (2) are linear, their
transfer functions are easily written down for the time—centered, equispaced
sampling case (tj = jAt),

N
YN(m) = (1/2N + 1)(1L + 2 £ cos wjAt)
=1 (%)
= (1/2N + 1) sin [(2N + 1) wAt/21/sin (wAt/2) .
- 2 N
Tow) = (IGN" + 3N - 1)/8](1 + 2 I cos wjlt)
. j=1 (5
~ 2 7 32 cos widt)/[(2N + 1) (3N> + 3N — 1)/S - NQ¥ + 1) (28 + 1)/3] .
j=1

Egs. (4) and (5) are plotted in figure 1 for N = 6, 12, and 24.

It is evident from figure 1 that the shape of the transfer functions for
either simple averaging or least-squares pdlynomial fitting do not change
appreciably as N is increased. As N is decreased, this is no longer true.

In fact, for N = 1, the polynomial transfer function YN(m) equals 1, as can
be seen from (5). This is not surprising since a second-order polynomial
exactly fits three data points.

The major change in either transfer function with varying N occurs when
At, the data sampling interval, is kept constant, If we define the simple
averaging filter "bandwidth'" as w' = 7 in figure 1, then the "bandwidth' =
215/ (2N 4+ 1)At decreases rapidly with increasing N as one expects for any
averaging or smoothing filter. From figure 1 it is also easy to compare the
effects of simple averaging and second—order polynomial fitting. Since the
side-lobe structure of both filters is essentially the same, we need only be
concerned with the bandwidths. The polynomial filter bandwidth is about 1.75
times that of simple averaging for the same number of peoints, so comparability

is obtained when (2N + 1) = 1.75 (2N + 1)

polynomial simple averaging’

4, OPERATION AND FLOW
EDITQ is shown in figure 2. The basic equations are given below.

The least-squares coefficients of a second-order polynomial y = ay + a
+ a,x2 are

2

X

1

2

x3 )+

: 2
8y = [Sy(sx23x4 -8 Sxy(sx3sx2 - stx4) + Sny(SxSx3 - Sx2 )1/D (6)

4 = [L(Sxysx4 - SnySXS) * Sx(SX2y8x2 - Sysx4) + Sx2(5y8x3 - Sxysx2)]/D > (D




= 1L (sz x2y x35xy) S (s 3 ¥y B SXSXZY) * SXZ(SxSxy - SXZSy)]/D s (&)
2
D = - -
[L(S 2S5t~ ) +8 (5,45, stx4) + 5 ,(5,5,3 - 8,1 , (9)
where L
Sx = I x, ,
j=1
L
sz = I x.2 s
=1
Loy
S =I X, ¥ , ete
x2y je1 373

The residual variance o® is given by

L
=1/(L -3} 2 (y, - a
. j=1 3

2 2.2
- alxj - A%, ) .

0 3

but can be expanded and summed and more efficiently written as

2 _ _ _ _ 2
g- = (Sy2 2aOSy 2alSxy 2a28x2y + Léo

(10)

) 2 2
+ ZaOalS + ZaOalez ay sz + ZalaZSK3 + a, Sx4)/(L -3

The covariance matrix Cyy of ag, a3, and ap, is given by (Jenkins and
Watts, 1968)

L Sx sz -1
_ 2
cov - Sx SXZ Sx3 ¢ i (11)
Sx2 Sx3 Sx4

In (11), the element Cuy (1, 1) is the estimated error variance in the coeffi-
cient ag, Cuy (1, 2) is the estimated error covariance between aj and aj, and
so forth.

REFERENCE

Jenkins, A.M., and D.G. Watts, Spectral Analysis and Its Applications, Holden-
Day, San Francisce, 1968, 525 pp.
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Flgure 1.--Plot of YN(w ) and YN(w ) for N 6, 12, and 24, ©Note
that the differences between N = 6, 12, and 24 are too
small to show clearly on this plot. As N increases,
there is a slight suppression of the side lobes.
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Figure 2.--Flow chart.
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DEV:]YJ--a., caiXj-a,X2 | /@
if{DEV > DEVMAX) DEVMAX = DEV

DEV < SDLIM>.22
No

NQUT =NOUT+1, NCORR = NCORR + 1, NLOST {NCORR} =J, L=L - 1
Correct alt sums and compite 80,24, 8, and ¢ without rejected data point

Yes

MSG 1300

MSG 1100

"

[ Put indices of rejected boints inorder in NLOST |

———————— 120 CONTINUE

¥

Compute covariance matrix and adjust it and
o, 2,, and a. for T@ and X@ offsets

r Restore array DATA by adding T@ and X@ 1

Figure 2.--Flow chart (continued).
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APPENDIX

CDC 6600 FTN V3,0-3P4 QPT=(

SUBROUTINE EDITQ(DATAsLENGTHs IMAXsINDeI+MAXOQUTsBOUNDsSNLIMyNLOST

STDsNCORR9AQ4ALl s A29 COVARDEVMAX)

PROGRAMMED BY DT ACHESONs CEDDAs APRIL 1972

EDITQ IS DESIGNED AS A COMPUTATIONALLY.FAST AND EFFICIFNT MEANS
OF FLAGGING SUSPICIOUSLY LARGE OR SMALL VALUES IN & SERIES OF DATA
THE DATA SERIES IS FITTED WITH A LEAST SQUARES FIT OF SECOMD ORDER

POLYNOMIALS

UNDER THE ASSUMPTION THAT THE PROGRAMMER LIMITS THE

LENGTH OF THE DATA SERIES TO REGIONS SUFFICIENTLY SMALL SO THAT

SECOND ORDER POLYNOMIALS ARE LOCALLY A GOOD APPROXIMATION TO THE
SHAPE OF THE CURVE,

INPUT
DATA(JsI) »

I
MAXOQUT

BOUND

SDLIM
"IND

QUTPUT
DATA{JST)
NLOST (M)
STOD

NCORR
AQsAlsA2

COVAR{N+N)
N

SUBROUTINES
REFERENCE -

J=1+LENGTH 1S THE UNEDITED DATA SERIESs Tx=lsIMAX
=THE INDEX OF THE VARIABLE TO BE EDITED.

=THE MAXIMUM NUMBER OF DATAPOINTS WHICH MINRMT RE
FLAGGED

=A NEGATIVE VALUE SMALLER THAN ANY ACCEPTARLE DATA
VALUE AND LARGER IN ARSOLUTE VALUE THAN ANY

ACCEPTEBLE DATA VALUE,

=THE LIMITs IN NUMBER OF STANDARD DEVIATIONSs WITHIN
WHICH THE DATA IS CONSIDERED ACCEPTABLE.

=THE INDEX OF THE INDEPENDENT VARIABLE,

= THE ARRAY OF DATA WITH FLAGGED POINTS HAVING THE
VALUE INPUT DATA(I+J)+2.,0%BOUND

M=1sMAXOUT IS THE ARRAY OF INDICES J (IN INCREASING

ORDER) OF FLAGGED DATA,. }
=THE RESIDUAL STANDARD DEVIATION OF THE DATA WITH THE

FLAGGED POINTS EXCLUDED,

=NUMBER OF POINTS FLAGGED. .

=THE LEAST SQUARES POLYNOMIAL COEFFICIENT nF THE DATA
SERIES AFTER EDITING. .

=THE COVARIANCE MATRIX OF AQs Als AND A2

=NUMBER OF POLYNQMIAL COEFFICIENTS

CALLED = NONE
JENKINS AND WATTS

DIMENSION DATA(LENGTHs IMAX3I oNLOST (MAXOUT) »COVAR{3+3)
COMMON /FILES/ ICARD+IFLTHDsMSCARD+IBSWCAL s IBOOMSMETOsNAVOISHIPN,

1
SUMX=0.0

SUMXSQ=0,.,0
SUMX3=0,0
SUMX4=0,0
SUMY=0,0
SUMYSQ=0,0
SUMXY=0,0
SUMX2Y=0,0

IPRINTsMET19NAV1 ¢ ITEMP ¢ TARCHY

0a
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SURROUT INE

EDITQ TRACE CDC 6600

10

DEVMAX=0.0
RL=0.0
NCORR=0
AO=BOUND
Al1=BOUND

AZ2=BOUND

"THALFL=LENGTH/2

DO 2 10=1sIHALFL

I1=IHALFL+T0~-1

X0=DATA(Ils1)

TO=DATA(TI1l+IND)
IF(X0.GT+BOUND(AND,TO.GT+ROUND) GO TO 4
I1=THALFL~I0+]

X0=DATA(IlsI)

TO=DATA(Il+IND)

IF (X0.GT.BOUNDLJAND,TO.GTL.ROUND) 60 TO 4
CONTINUE

NCORR=LENGTH

DO 3 J=1s+MaxoUT

NLOST(J)=J

CONTINUE

RETURN

CONTINUE

DO_10 J=1sLENGTH
DATA(Js INDI=DATA{JSIND)=TO

IF(DATA(JsT) +GT.BOUND} GO TO 5
NCORR=NCORR+)

NLOST (NCORR)=J

GO TO 10

CONTINUE
DATA(JsI)=DATA{JsI)=X0
RJ=DATA{J+ IND)
SUMX=SUMX+R
SUMXSQA=SUMXSQ+RJ*R )
SUMX3I=SUMX3+RJ*RJ*RJ
SUMX4=SUMX4+RJ%*RJ%R J*RJ
DATAJ=DATA(Js 1)
SUMY=SUMY+DATAJ
SUMYSQ=SUMYSQ+DATAJ*DATAJ
SUMXY=SUMXY+RJI#DATAJ
SUMX2Y=SUMX2Y+RJ#RJ*DATAJ
RL=RL+1,0

CONTINUE

IF{RL.LE«4.1) GO TO 127
AVG=SUMY /RL

DENOM=RL* (SUMXSQ*SUMX4=SUMXIA%SMX3)

+SUMX# (SUMXI#SUMXSQ-SUMX#SUMX4)

1
2 +SUMXSQ* (SUMX#SUMX3-SUMXSQ#*SUMXSQ)

AD= (SUMY* (SUMXSOQ#SUIMX4~SUMXI#SUMX3)
$SUMXY#* (SUMXI*SUMXSQ=SUMX*SUMX4)

1
2 +SUMX2Y# (SUMX#SUMXI=SUMXSQ*SUMXSQ) ) /DENOM

Al=(RL* (SUMXY*SUMX4=SUMX2Y#SUMX3}
1 +SUMX® {SUMXRY #SUMXSQ=SUMY*SUMX4)

2 +SUMXSQ¥* (SUMYRSUMX3=SUMXY#SUMXSG) )} /DENOM

AZ= (RL* (SUMXSQ*SUMX2Y=SUMXI#*SUMXY)

FTN ¥3,0-324 OPT=0

0a
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11

CDC 6600 FTN V3,0-324 OPT=0 04
1 +SUMX® {SUMX3#SUMY=SUMX#SUMX2Y)
2 +SUMXSQ® (SUMX#SUMXY=SUMXSQ®*SUMY } ) /DENOM

1
2

VDV=(SUMYSQ=2, 0#A0RSUMY=2 0% AL *SUMXY =2, 0¥ A2 R SUMX2Y+RL®*ADRAQ+2 ,#AQ®
AL#SUMX+2 . 0%AQRAZ#SUMNSQ+AL*A1#SUMXSQ+2, 08 AL #AZHSUMX3+A2S
AZ%SUMX4) /(RL=3.0)

VDV=ABS (VDV)

STD=SQART (VDOV)

IF(STD.EQ.0.0} GO TO 125

DO 30 NPASS=1410

NOUT=0

00 20 J=1+LENGTH

IF{DATA{J»I).LT.{(BOUND+0,1)) GO TO 20

RJ=DATA{Js INDY

CEV=ABS ({DATA( s 1) =AD=AL*RJ=A24RI*RJ) /STD)

IF(DEV.GT.DEVMAX) DEVMAX=DEVY

IF(DEV.LEL.SDLIM) GO TO 20

NOUT=NOUT+1

NCORR=NCORR+1

NLOST{NCORR) =)

RL=RL~-1,0

SUMX=SUMX=RJ

SUMXS5Q=SUMXSQ=RJ#*R }

SUMX3=SUMX3=-RJI*RJ*RJ

SUMX4=SUMX4-RI#RJI=RI*R.)

DATAJ=DATA(J 1)

DATA{Je 1)=DATA(Js 1) +X0+¢2,0*ROUND L

SUMY=SUMY=DATAJ

SUMYSQ=SUMYSQ~DATAJ*DATAJ

SUMXY=SUMXY=RJ#DATAJ

SUMXZ2Y=SUMX2Y=RJ*R J*DATAJ

AVG=SUMY/RL

DENOM=RL# (SUMXSQ#SUMX4=-SUMXI*#SUMX3)
+SUMXE (SUMX3I#SUMXSQ=SMX®SUMX &)

AD=(SUMY# (SUMXSQ#SUMXH=SUMX I*SUMA3)
+SUMXY# (SUMX3I#SUMXSQ=SIIMX*SUMX4)

1
2 +SUMXSQ® (SUMX#SUMX3=SUMXSQ*SUMXSQ)
1
4

1
2
1
2

1
2

+SUMX2Y 2 (SUMX#SUMXI=SUMXSQ#SUMXSQ) } /DENOM
Al=(RL* (SUMXY#SUMX4=SUMX2Y#SUMX3)

+SUMX# (SUMX2YS#SUMXSQ=-SHMYRSUMX4) |

+SUMXSQa {SUMY#SUMXI=SUMXYH#SUMXSQ) ) /DENOM

AZ2={RL* (SUMXSQ®SUMX2Y=SUMX3I*SUMXY)
+SUMX® {SUMX32SUMY=SUMX*SUMX2Y)

+SUMXSO# (SUMX#SMXY=SUMXSEH#SUMY) ) /DENOM

VOV=(SUMYSQ=-2, 0% A0#SUNY=2 0# ALl #SUMXY -2, 0% A2RSUMX2Y +RL*AQ#A0+2 , HAD®
Al#SUMX+2, 0*A0“A2*SUMXSQ*A1*AI*SUMXSQOE QeAl#A2#SUMX3+A2R
AZ2#SUMX4) /(RL-3.0)

STOD=SQRT {ABS(VDV))

IF{SQRT(RL=340) .LE.SDLIM) HRITE(IPRINT-IBOO)

IF{VDV.LE,.0,0) GO TO 100

IF {NCORR,GE.MAXOUT}) GO TO 40

IF(RLJLE.4.1) GO TO 100

20 CONTINUE

30

IF (NOUT.EQ.0) GO TO 100
CONTINUE

WRITE(IPRINT»1000)1




12

70

75

80

85

90

95

00

05

10

15

SURROUTINE EDITQ TRACE

1000

40
1100
1300

190

110
120
125

127

130

CDC 6600 FTN v3,0-~324 OPT=0 04

FORMAT(1H »21H EDITING OF VARIABLE s12+28H EXHAUSTED BEFORE COMFPLE
1TION/)

GO TO 100

WRITE(IPRINT»1100) IsMAXOUT

FORMAT(IH +21H EDITING OF VARIABLE +IZ2s36H STOPPED BECAUSE THE MAX
1IMUM NUMBER +I4+18R HAVE REEN REMOVED/)

FORMAT(1HOsB6H WARNING -~ YOU HAVE TOO FEW POINTS To EDIT EFFECTIVE
1LY AT THE SPECIFIED VALUE OF SODLIM//)

CONTINUE

KSP=NCORR

IF(KSP.LE.1) GO TO 125

JSP=K5P-1

DO 120 J=1,JSP

KST=J+1

DO 130 K=KSTsKSP

IFINLOST{J) LT.NLOST(K)) GO TO 110

NHOLD=NLOST (K)

NLOST (K)=NLOST (J)

NLOST (J)=NHOLD

CONT INUE

CONT INUE

CONTINUE

AD=X0+A0-A1*TO+AZ*TO*TD
=A]~- #pDS

i£=ai 2.0%A2*TO

COAQAD= (SUMXSQ#SUNX4~SUMXI*SUMX3) #vDV/DENOM

COAQAL= (SUMXI#SUMXSQ~SUMX#SUMX4) *VOV/DENOM

COADA2= (SUNX*SUMXI-SUMXSQ#SUMXSQ) #*VDV/DENOM
COA1Al=(RL#SUMX4«SUMXSQO#SIIMXSO) *VDV/OENOM
COALAZ2=(SUMX*SUMXSQ=RL*SUMX3) #*VDV/DENOM

COAZA2= (RLASUMXSQ=-SUMX*SUMX )} #VDV/DENOM
COVAR(1+1)=COAQAD=2,*TO*COAOAL+2,#TO*TO#COAQAZ+TO®TO*CNATAL
12 #TO*TO#*TO*COALA2+TO*TO*TO#TQ*COA2AZ
COVAR(1+2)=COADAL~2.*TO*CNAQAZ=TO*COALAL+3.*TO*TO*COALAZ
1=2.,*TO*TO*TO*COA2A2
COVAR(14+3)=COAQAZ~-TO*COALAZ2+TORTO*COAZAZ
COVAR(252)=COA1AL-4.*TO#COALAZ+4, 2 TO*TORCOAZAZ
COVAR(2+3)=COALA2=2.,*TO®CNAZAZ

COVAR(3,3)=COAZ2A2

COVAR({2+1)=COVAR(1+2}

COVAR{3+1)=COVAR(]1+3)

COVAR{3+2)=COVAR(2.3)

CONTINUE

D0 130 J=1+LENGTH
DATA(JsINDY=DATA(Js IND)+TO
IF(DATA{Js1) LLELROUND) GO TO 130
DATA{J2I)=DATA(JsI)+X0

CONTINUE
RETURN

END




