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DATA EDITING - SUBROUTINE EDITQ 

Center for Experiment Design and Data Analysis 
National Oceanic and Atmospheric Administration 

Washington, D.C. 20235 

Abstract. EDITQ is a FORTRAN subroutine designed to recursively edit, 
i.e., remove wild or suspicious points from a data sequence. Editing 
is done by fitting a second-order polynomial Yi = a2 + a1xi + a2xi2 , 
i = 1, 2, ••• , N to a paired sequence { (yl, xl), (y2, x2), .•• , (YN, 
xN)}, computing the residual variance 

2 N A 2 
a R = 1/ (N - 3) Z: (y. - y. ) 

i=l :L :L 

and forming the dimensionless ratio Ri2 = (Yi - Yi)2/crR2 for each 
point. If Ri2 exceeds some specified limit, the point (Yi• Xi) is 
rejected, and the residual variance and polynomial coefficients are 
recomputed without this data· point. The process continues until no 
further data points are rejected in subsequent passes over the en­
tire sequence. The subroutine returns the original- sequence with 
flagged rejected values of y, the final values of the residual ·var­
iance and polynomial coefficients, and the covariance matrix of the 
coefficients. 

1. INTRODUCTION 

EDITQ is a general-purpose routine designed to edit data, i.e., to remove 
or flag wild or ridiculous or merely suspicious data values. Data are input 
as a sequence of paired independent and dependent variables. The principal 
outputs are the same data with edited data points flagged; the three coeffi­
cients of a second-order polynomial fitted to all accepted, but no rejected, 
data points; the covariance matrix of these coefficients; and the residual 
variance. 

Editing is done as follows: 

(1) The dependent variable is least-squares fitted with a second-order 
polynomial in the independent variable, and the residu_al variance is calculat­
ed. 

(2) The absolute value of the deviation of each dependent datum from the 
fitted polynomial is compared with the square root of the residual variance. 
If their ratio exceeds a specified limit, the dependent datum is flagged and 
rejected from further consideration. 

(3) When a datum is rejected, the polynomial coefficients and residual 
variances are recomputed without this data point, and the ne~t dependent datum 
is examined in the same way, This process continues until no further points 
are removed, or a fixed number of passes have already been made over the entire 
data sequence. 
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The principal advantages of EDITQ are: 

(1) The accept/reject criterion for editing described in step (2) above 
automatically accomodates both very noisy and very clean data, 

(2) EDITQ is recursive. Once a data point, no matter how wild, is 
rejected, it no longer figures in any further computations and cannot obscure 
other data points with much smaller error content but still worthy of rejection. 

(3) The polynomial coefficients returned provide a simple means to com­
pute replacement values for those rejected in the process. 

The principal· restrictions on the use of EDITQ are: 

(1) If we view the dependent data as describing an underlying physical 
process more or less obscured by noise, it must be possible to approximate the 
underlying physical process by a second-order polynomial in the independent vari­
able over the range of the data sequence. In other words, the modeling error 
must be significantly less than the residual variance returned. For example, 
a rapidly varying dependent variable, say surface solar radiation, could only 
be edited effectively if the sample rate were very high to allow EDITQ to 
operate on a sequence with a sufficient number of points to do useful editing 
but sufficiently short in duration for a second-order polynomial to be a good 
approximation to the real physical process. · 

(2) The independent variable is not edited. Un1oredictable results occur 
when this variable contains errors. 

(3) There is no physics in EDITQ. It has utterly no capability for 
editing consistently ridiculous data, say a sequence of absolute zeroes in 
temperature as ·a function of time. EDITQ is adept at editing outliers in a 
statistical sense, but must be preceded by a physical credibility window. 

2. USE 

With reference to the listing in the appendix to this discussion, users 
must input the two-dimensional array DATA, its dimensions in storage LENGTH 
and IMAX, the index IND at the independent variable and the index I of the 
dependent variable, the maximum number of points MAXOUT that may be rejected 
and also the dimension of array NLOST, the value BOUND that must be more 
negative than the negative of the absolute value of any acceptable dependent 
datum, and the accept/reject ratio SDLIM. 

The routine returns the array DATA in which all values of the independent 
data and all accepted dependent data values are as input, while those rejected 
have the value DATA (Jrejected , I) + 2 x BOUND; the number of points rejected 
NCORR; the indices of rejected points NLOST (k), k = 1, 2, ••• , NCORR; the 
final polynomial coefficients A~, Al, and A2; the covariance matrix COVAR of 
these three coefficients; the square root of the residual variance STD, and 
the maximum deviation DEVMAX of any data point from the polynomial current at 
the time DEVMAX was found. 
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Appropriate choices of some of these parameters lend considerable flexi­
bility to the use of EDITQ, e.g., 

(1) SDLIM- If SDLIM is greater than [LENGTH-3] 1 / 2 , no editing will take 
place, and the routine serves simply to least-squares fit the data and return 
the residual variance, polynomial coefficients, and their covariance matrix. 

(2) BOUND - If attention is paid to the number of significant di'gits 
that can be represented in the computer being used, original data values of 
rejected points can be recovered by addressing the array NLOST for the in­
dices Jrejected = NLOST (k), k = 1, 2, •.• , NCORR and subtracting 2 x BOUND 
from the returned values in DATA. If preliminary editing has been done, say 
simple checking for physically impossible values, and points failing this 
test are assigned values less than BOUND, EDITQ will not consider them further. 

3. POLYNOMIAL FITTING AS A FILTER 

Since a least-squares fitted second-order polynomial is, in general, a 
smooth estimator of noisy data, it is suitable to compare this estimate with 
simple arithmetic averaging. 

Define time-centered simple arithmetic averaging as 

N 
l/(2N + 1) E y. , yJ. = y(tJ.) 

j=-N J 
(1) 

where tj is time centered (without loss of generality) at t 0 = 0. The analo­
gous second-order least-squares fitted estimate is 

yN(o) = aO + 2 
altO+ a2tO = ao 

(2) 

(E 4 2 2 + 1) t 4 (E t.2)2J a = t. E yj - E t. E t. y.) I [ (2N E 
0 J J J J J J 

all sums being j = -N, ••• , N. 

The transfer function of a filter is defined as the ratio of the Fourier 
transform F of output to that of the input, 

(3) 
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Since both smoothing operations defined in (l) and (2) are linear, their 
transfer functions are easily written down for the time-centered, equispaced 
sampling case (tj = jAt), 

N 
= (l/2N + 1)(1 + 2 E cos wjAt) 

j=l 

(l/2N + 1) sin [(2N + l) wAt/2]/sin (wAt/2) 

N 
+ 3N- 1)/S](l + 2 E cos wjAt) 

(4) 

j=l (5) 
N 

- 2 E j
2 

j=l 
cos wj6t)/[(2N + 1)(3N2 + 3N- 1)/S- N(N + 1)(2N + 1)/3] . 

Eqs. (4) and (5) are plotted in figure 1 for N = 6, 12, and 24. 

It is evident from figure 1 that the shape of the transfer functions for 
either simple averaging or least-squares pdlynomial fitting do not change 
appreciably as N is increased. As N is decreased, th}s is no longer true. 
In fact, for N = 1, the polynomial transfer function Yu(w) equals 1, as can 
be seen from (5). This is not surprising since a second-order polynomial 
exactly fits three data points. 

The major change in either transfer function with varying N occurs when 
At, the data sampling interval, is kept constant, If we define the simple 
averaging filter "bandwidth" as w 1 = 1T in figure 1, then the "bandwidth" 
2rr/(2N + l)At decreases rapidly with increasing N as one expects for any 
averaging or smoothing filter. From figure 1 it is also easy to compare the 
effects of simple averaging and second-order polynomial fitting. Since the 
side-lobe structure of both filters is essentially the same, we need only be 
concerned with the bandwidths. The polynomial filter bandwidth is about 1.75 
times that of simple averaging for the same number of points, so comparability 
is obtained when (2N + l)polynomial; 1.75 (2N + l)simple averaging 

4. OPERATION AND FLOW 

EDITQ is shown in figure 2. The basic equations are given below. 

The least-squares coefficients of a second-order polynomial y = a0 + a1x 
+a x2 are 

2 

a0 = [S (S 2s 
4

- s 2) + s (S 3's 
2

- s s 
4

) + s 2 (S s 3 - sx
2

2)]/D (6) 
y X X X3 XY X X X X X y X X 

a1 = [L(S S 
4 

- S 2 S 
3

) + S (S 2 S 
2 

- S S 4 ) + S 
2

(S S 3 - S S 2) ]/D , (7) xyx xyx x xyx yx x yx xyx 



a2 = [L(S 2s 2 - S 3s ) + S (S 3s - S Sx2 ) + Sx2(S S - S 2s )]/D 
X xy X xy X X y X y XXY X y 

where 

D = [L(sx2 sx4 - sx3
2

) + s (S s - s s ) + s (S s s 2)] xx3x2 xx4 x2xx3-x2 

L 
s l: x. 

X j=l J 

L 
s = l: x. x2 j=l J 

L 
s = l: x. x2y J j=l 

The residual variance cr2 is given by 

L 
cr 2 = 1/(L- 3) l: (y. -

j=l J 

2 

2 
yj ' 

etc. 

but can be expanded and summed and more efficiently written as 

The covariance matrix C0 v of a0 , a1, and a2, is given by (Jenkins and 
Watts, 1968) 

s sx2 X 

c sx2 sx3 
2 = a ov 

sx3 sx4 

5 

(8) 

(9) 

(10) 

(11) 

In (11), the element C0 v (1, 1) is the estimated error variance in the coeffi­
cient ao, C0 v (1, 2) is the estimated error covariance between a0 and al, and 
so forth. 

REFERENCE 

Jenkins, A.M., and D.G. Watts, Spectral Analysis and Its Applications, Holden­
Day, San Francisco, 1968, 525 pp. 
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APPENDIX 

SURROUTINE EOJTQ TRACE CDC 6600 FTN V3,0-3?4 OPT=O 04 
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SUBROUTINE ED ITO (DATA tLENt;THt lMAXt I NOt I tMAXOUT tROUNDtSnLJM,NLOST '· 
1 STDtNCORRtAO,Alt~2tCOVARtOEVMAX) 

PROGRAMMED BY OT ACHESON• CEODA, APRIL 1972 

EOITQ IS DESIGNED AS A COMPUTATIONALLY FAST AND EFFIC!FNT MEANS 
OF FLAGGING SUSPICIOUSLY LARGE OR SMALL VALUES IN A S~RIES OF DATA 
THE DATA SERIES IS FITTED WITH A LEAST SQUARES FIT OF SECOND ORDER 
POL YNOM !ALS UNDER THE ASSUMPTION THAT THE PROGRAMMER L IM!TS THE 
LENGTH OF THE DATA SERIES TO REGIONS SUFFICIENTLY SMALL SO THAT 
SECOND ORDER POLYNOMIALS ARE LOCALLY A GOOD APPROXIMATION TO THE 
SHAPE OF THE CURVE, 

INPUT 

OATA(J,!l, J:I,LENGTH IS THE UNEDITED DATA SERIES• I:J,!MAX 
I =THE INDEX OF THE VARIABLE TO BE EDITED. 
MAXOUT =THE MAXIMUM NUMBER OF OATAPO!NTS WHICH M!C.HT RE 

FLAGGED. 
BOUND =A NEGATIVE VALUE SMALLER THAN ANY ACCEPTARLE nATA 

VALUE AND LARGER IN ABSOLUTE VALUE THAN ANY 
ACCEPTEBLE DATA VALUE, 

SOLIM =THE LIMIT• IN NUMgER OF STANDARD OEV!ATIONSo WITHIN 
WHICH THE DATA IS CONSIDERED ACCEPTABLE. 

!NO =THE INDEX OF THE INDEPENDENT VARIABLE, 

OUTPUT 

OATA(J,Il = THE ARRAY OF DATA WITH FLAGGED POINTS HAVING THE 
VALUE INPUT OATA(ItJ) +2.0*BOUNO 

NLOSTIMI, M=l•MAXOUT IS THE ARRAY OF INDICES J liN INCREASING 
ORDER) OF FLAGGED DATA, 

STO =THE RESIDUAL STANDARD DE.VIATION OF THE DATA WITH THE 
FLAGGED POINTS EXCLUDED, 

NCORR =NUMBER OF POINTS FLAGGED, 
AOoA!,A2 =THE LEAST SQUARES POLYNOMIAL COEFFICIENT OF THE DATA 

SERIES AFTER EDITING. 
COVAR(N,Nl=THE COVARIAN~E MATRIX OF AO, AJ, AND A2 
N =NUMRER OF POLYNOMIAl COEFFICIENTS 

SUBROUTINES CALLED - NONE 

REFERENCE - JENKINS AND WATTS 

DIMENSION DATAILENGTHo!MAXl,NLOSTIMAXOUTl,COVARI3o3l 
COMMON /FILES/ ICAPDtiFLTHOtMSCARD,JBSWCALtlBOOMtMETOtNAVO.ISHIPNt 

I IPRJNToMET\,NAVI•ITEMPolARCHV 
SUMX=O.O 
SUMXSQ=O.O 
SUMX3=0.0 
SUMX4=0,0 
SUMY::O.O 
SUMYSQ=O.O 
SUMXY=O,O 
SUMX2Y=O.O 

-~~--------------
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SUoROUTINE EDITQ TRACE CDC 6600 FTN V3.0-324 OPT=O 04 

60 

65 • 

70 

75 
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85 

90 

95 

00 

OS 

10 

DEVMAX=O.O 
RL=o.o 
NCORR=O 
AO=BOUND 
Al=BOUND 
A2=BDUND 

·JHALFL=LENGTH/2 
DO 2 IO=l•IHALFL 
Il=IHALFL•I0-1 
XO=DATA(J!,I) 
TO=DATAIIlo!NDl 
IF<XO.GT.BOUND.ANO.TO.GT.ROUNDJ GO TO 4 
Il=IHALFL-10+1 
XO=DATA I II, I) 
TO=DATAIII,JNDl 
IF<XO.GT.BOUNO.AND.TO.GT.ROUNO) GO TO 4 

2 CONTINUE 
NCORR=LENGTH 
DO 3 J=l•MAXOUT 
NLDSTIJl=J 

3 CONTINUE 
RETURN 

4 CONTINUE 
DO 10 J=l•LENGTH 
DATAIJ•INDl=DATA(J,JNDl-TO 
IFIDATAIJ•Il.GT.BOUNDl GO TO 5 
NCORR=NCORR+l 
NLOSTINCORRl =J 
GO TO 10 

5 CONTINUE 
OATA(J,Jl=DATAIJ•ll-XO 
RJ=DATAIJo!NDl 
SUMX=SUMX+RJ 
SUMXSQ=SUMXSQ+RJ*RJ 
SUMX3=SUMX3+RJ*RJ*RJ 
SU~X4=SUMX4+RJ*RJ*RJ*RJ 
DATAJ=DATAIJ•Il 
SUMY=SUMY•DATAJ 
SUMYSQ=SUMYSQ+DATAJ*DATAJ 
SUMXY=SUMXY+RJ*OATAJ 
SUMX2Y=SUMX2Y+RJ*RJ*DATAJ 
RL=RL+leO 

10 CONTINUE 
IFIRL.LE.4.!l GO TO 127 
AVG=SUMY/RL 
DENOM=RL*ISUMXSQ*SUMX4-SUMX3*SUMX3) 

1 +SUMX*{SUMX3*SUMXSQ-SUMX*SUMX4) 
2 +SUMXSQ*ISUMX*SUMX3-S\JMXSO*SUMXSQl 

AO=ISUMY*ISUMXSQ*SUMX4-SUMX3*SUMX3l 
I +SUHXY*ISUMX3*5UHXSQ-SUMX*SUMX4l 
2 +SUMX2Y*ISUMX*SUMX3-5UMXSQ*SUMXSQ)l/OENOM 

Al=IRL*ISUMXY*SUMX4-SUHX2Y*SUMX3l 
1 +SUMX* (SUMX2Y*SUMXSQ-SW4Y*SUMX4) 
2 +SUMXSO*ISUMY*SllMX3-SUMXY*SUMXSQll/DENOM 

A2=1RL*ISUHXSQ•SUHX2Y-SUHX3*SUMXYl 



IS 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

11 

SURROUTINE EDITO TRACE CDC 6600 fTN VJ,0-3?.4 OPT=O 04 

I +SUHX*ISUHX3*SUMY-SUHX•SUHX2Yl 
2 +SUHXSO*ISUHX*SUHXY-SUMXSO*SUHYll/DENOH 

VOV=CSUMYS0-2.0*AO*SUMY•2.0*Al*SUMXY-2.0*A2*SUMX2Y+Rl*AO*A0+2.*AO* 
1 Al*SUHX+2.0*AO*A2*SU.MXSQ+Al*Al*SUMXSQ+2.0*Al*A2*SUMX3+A2* 
2 A2*SUHX4l/IRL-Jo0l 

VDV=ABSIVDVl 
STD=SORTIVDVl 
lfiSTD.EQ.O,Ol GO TO 125 
DO 30 NPASS=IoiO 
NOUT=O 
DO 20 J=I•LENGTH 
lfiDATAIJolloLT.IBOUND+O,lll GO TO 20 
RJ=DATAIJoiNDl 
DEV=ABSIIDATAIJoll-AO-AI*PJ-A2*RJ*PJl/STDl 
lfiDEVoGT.DEVHAXl OEVHAX=OEV 
IfiDEV.LEoSDL!Ml GO TO 20 
NOUT=NOUT+I 
NCORR=NCORR+I 
NLOSHNCORRl =J 
RL=RL-1,0 
SUHX=SUHX-RJ 
SUMXSQ=SUHXSO-RJ*RJ 
SUMX3=5UHX3-RJ*RJ*RJ 
SUHX4=SUHX4-RJ•RJ*RJ*RJ 
DATAJ=DATAIJoll 
DATACJ•l)=OATA(J,J)+X0+2.0*ROUNO 
SUHY=SUHY-DATAJ 
SUMYSO=SUMYSO-DATAJ*DATAJ 
SUMXY=SUHXY-RJ*DATAJ 
SUHX2Y=SUMX2Y-RJ*RJ*DATAJ 
AVG=SUHY/RL 
DENOH=RL*ISUHXSO*SUHX4-SUMX3*5UHX3l 

I +SUHX*ISUMX3*SUHXSO-SUMX*SUHX4) 
2 +SUHXSQ*ISUHX•SUHX3-~liHXSQ*SUMXSOl 

AO=ISUHY*ISUHXSO*SUHX4-SUMX3*SUHX3l 
1 +SUMXY* (SUMX3*SUMXSO-Silfo4X*SUMX4J 
2 +SUMX2Y*ISUMX*SUHX3-SUMXSO*SUH~~Qll/DENOH 

AI=IRL*ISUHXY*SUHX4-5UMX2Y•SUMX3l 
1 +SUMX*CSUMX2Y*SUMXSQ-SIIMY*SUMX4J 
2 +SUHXSO*(SUMY*SUHX3-SUMXY*SUHX5Qll/DENOH 

A2=1RL*ISUHXSQ•SUMX2Y-SUMX3*5UMXYl 
I +SUHX*ISUMX3*5UMY-SUMX•SUMX2Yl 
2 +SUM X SO* I SliMX*SIJMXY-SUMXSO*SUMYl l /OENOH 
VDV=CSUMYS0-2.0*AO•SUMY-2.0*Al•SUMXY-2.0*A2*SUMX2Y+Rl*~O*A0+2.*AO* 

1 Al*SUMX+2.0*AO*A2*SUMXSQ+Al*Al*SUMXSQ+2.0*Al*A2*SUMX3+A2* 
2 A2*5UMX4l/IRL-3o0l 

STD=SQRTIABSIVOVll 
lfiSQRTIRL-3oOloLE.SDL!Ml WRITEIIPR!NTollOOl 
lfiVDVoLE,O.Ol GO TO 100 
lfiNCDRR,GE.HAXOUTl GO TO 40 
lfiRL,LE.4.1l GO TO 100 

20 CONTINUE 
lfiNOUT,EO.Ol GO TO 100 

30 CONTINUE 
WRITEIIPR!NTolOOOl! 
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SUPROUT!NE EDITQ TRACE CDC 6600 FTN V3,0-324 OPT=O 04 

70 

7S 

80 

BS 

90 

9S 

00 

OS 

10 

IS 

1000 FORMATIIH •21H EDITING OF VARIABLE ,r2,28H EXHAUSTED BEFORE COMPLE 
IT ION!) 

GO TO 100 
40 WRITE!IPRINT•llOOI l•MAXOUT 

1100 FORMATIIH •21H EDITING OF VARIABLE •l2,36H STOPPED BECAUSE THE MAX 
!!MUM NUMgER •!4,18~ HAVE REEN REMOVED/I 

1300 FORMATIIH0,86H WARNING- YOU HAVE TOO FEW POINTS TO EDIT EFFECTIVE 
ILY AT THE SPECIFIED VALUE OF SDLIM//1 

100 CONTINUE 
KSP=NCDRR 
IFIKSP.LEoll GO TO 12S 
JSP=KSP-1 
DO 120 J=l,JSP 
KST=J+1 
DO 110 K=KST•KSP 
JFINLOSTIJI.LT.NLOSTIKII r.o TO 110 
NHOLD=NLOST! K I 
NLOSTIKI=NLOST!JI 
NLOSTIJI =NHOLD 

110 CONTINUE 
120 CONTINUE 
12S CONTINUE 

AO=XO+AO-Al•TO+A2*TO*TO 
A1=A1-2oO*A2*TO 
A2=A2 
COAOAO=ISUMXSO*SUMX4-SUMX1*SUMX31*VDV/DENOM 
COAOA1=1SUMX3*SUMXSQ-SUMX*SUMX41*VOV/DENOM 
CDAOA2=1SUMX*SUMX3-SUMXSQ*SUMXSQI*VDV/DENOM 
COAIA1=1RL*SUMX4-SUMXSQ*SIIMXSOI*VDV/DENOM 
COA1A2=1SUMX*SUMXSQ-Rl*S!J~X31*VDV/DENOM 
COA2A2=1RL*SUMXSO-SUMX*SUMXI*VDV/DENOM 
COVARtl.ll=COAOA0-2.*TO*COAOA1+2.•TO*TO*COAOA2+TO*TO*CCA1Al 

l-2.*TO*TO*TO*COA1A2+TO*TO•TO*TO*COA2A2 
COVARI1•21=COAOA1-2o*TO*C0AOA?.-TO*COAIA1•3.*TO*TO*COAIA2 

l-2.*TO*TO*TO*COA2A2 
COVARII•31=COAOA2-TO*COA1A2+TO*TO*COA2A2 
COVAR(2,21=COAIAI-4.*TO*COAIA?.+4,*TO*TO*COA2A2 
COVAR!2,31=COA!A2-2o*TO*COA2A2 
COVAR!3,31=COA2A2 
COVAR(2,li=COVAR!l,21 
COVARI3•li=COVAR1!,31 
COVARI3•21=COVARI2o31 

127 CONTINUE 
DO 130 J=l•LENGTH 
DATAIJ•INDI=DATAIJ,INDI+TO 
IFIDATAIJ+II .LE.BOIJNDI GO TO 130 
DATAIJ•li=DATA!Joli+XO 

130 CONTINUE 
RETURN 
END 


